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 The Effect of Crank Resistance on Arm Configuration  
and Muscle Activation Variances in Arm Cycling Movements 

by 
Mariann Mravcsik1,2, Lilla Botzheim1,2, Norbert Zentai2, Davide Piovesan3,  

Jozsef Laczko1,2,4 

Arm cycling on an ergometer is common in sports training and rehabilitation protocols. The hand movement is 
constrained along a circular path, and the user is working against a resistance, maintaining a cadence. Even if the 
desired hand trajectory is given, there is the flexibility to choose patterns of joint coordination and muscle activation, 
given the kinematic redundancy of the upper limb. With changing external load, motor noise and changing joint 
stiffness may affect the pose of the arm even though the endpoint trajectory is unchanged. The objective of this study 
was to examine how the crank resistance influences the variances of joint configuration and muscle activation. Fifteen 
healthy participants performed arm cranking on an arm-cycle ergometer both unimanually and bimanually with a 
cadence of 60 rpm against three crank resistances. Joint configuration was represented in a 3-dimensional joint space 
defined by inter-segmental joint angles, while muscle activation in a 4-dimensional "muscle activation space" defined 
by EMGs of 4 arm muscles. Joint configuration variance in the course of arm cranking was not affected by crank 
resistance, whereas muscle activation variance was proportional to the square of muscle activation. The shape of the 
variance time profiles for both joint configuration and muscle activation was not affected by crank resistance. Contrary 
to the prevailing assumption that an increased motor noise would affect the variance of auxiliary movements, the 
influence of noise doesn’t appear at the joint configuration level even when the system is redundant. Our results 
suggest the separation of kinematic- and force-control, via mechanisms that are compensating for dynamic non-
linearities. Arm cranking may be suitable when the aim is to perform training under different load conditions, 
preserving stable and secure control of joint movements and muscle activations. 

Key words: load; joint configuration; muscle activation variance; kinematic control, force control. 
 
Introduction 

Arm cycling on arm ergometers is often 
applied in sports training when the aim is to 
strengthen upper body muscles in neurologically 
intact individuals (Elmer, Danvind, et al., 2013) or 
to assess muscle powers and evaluate 
performances (Hübner-Woźniak et al., 2004). Arm 
cycling exercises are also included in medical 
rehabilitation protocols (Zhou et al., 2018) to 
improve motor performance and motor control of 
individuals with spinal cord injury or stroke 

(Lasko-McCarthey and Davis, 1991; Zehr et al., 
2012). These exercises are also used in 
combination with functional electrical stimulation 
(FES) training of individuals with spinal cord 
injuries. (Brurok et al., 2013; Bakkum et al., 2015) 
Despite a range of sport and rehabilitation 
applications (Elmer, Marshall, et al., 2013; 
Matjacic et al., 2014), the literature on arm cycling 
movements is limited relative to that on lower 
limb cycling. However, the importance of arm 
cycling has recently been supported by several  
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investigations. The influence of arm cycling at 
various cadences on the modulation of 
supraspinal and spinal excitability of the biceps 
brachii (Forman et al., 2015) has been 
demonstrated and data indicated an increase of 
excitability of corticospinal neurons as arm 
cycling cadence increased. The power output also 
affected the corticospinal excitability of arm 
muscles (biceps brachii and triceps brachii) during 
arm cycling (Spence et al., 2016; Lockyer et al., 
2018).  

Regarding interlimb coordination, 
particularly interlimb reflex modulation, it was 
shown that arm cycling suppresses H reflex 
amplitude in soleus muscles and bilateral and 
unilateral cycling yielded equivalent suppression 
(Loadman and Zehr, 2007)  and no significant 
differences were seen in the level of suppression 
of the H reflex at different crank loads (Hundza et 
al., 2012).   

It was supported by data, that neural 
coupling between the arms helps to increase 
movement symmetry and to ensure stable arm 
cycling (Vasudevan and Zehr, 2011). It has also 
been shown that arm cycling training improves 
strength, coordination of muscle activity during 
other types of motor tasks, such as walking, and 
neurological connectivity between the arms and 
the legs (Kaupp et al., 2018).  

Altogether, these studies highlight the 
importance to explore upper limb cycling from 
biomechanical and motor control aspects as well.  

Arm cycling is an interesting task because 
it offers the combination of a redundant, yet 
constrained movement. The hands are 
constrained to move along a given circular path. 
While the trajectory followed by the hand is 
constrained, the arm joints could follow a myriad 
of trajectories. Thus, the same hand trajectory is 
associated to a succession of ever-changing, and 
not necessarily repeatable, arm poses. The 
constrained hand trajectory is often performed at 
a specified cadence, against a set resistance. Given 
a cadence, an increase in crank resistance is 
known to require an increased muscle activation. 
Arm muscle activities during arm cycling at 
different workloads were characterized in 
(Chaytor et al., 2020) and it was found that there 
was a linear relationship between EMG amplitude 
and power output for individual muscles. On the 
other hand, an increase in muscle activation also  
 

 
produces an increased signal dependent motor 
noise. This motor noise can be a source of 
variability for the muscle activation and of the 
arm pose as well. 

Our goal was to examine how the crank 
resistance influences the variances of joint 
configuration and muscle activation. There is 
literature in robotics about control of 
manipulators where the movement of the end-
effector is constrained, but the load on it is 
changed (Mason, 1981; Khatib, 1987). This 
literature offers models for accomplishing the 
task. Our particular purpose was to analyze the 
physiological parameters of human subjects 
during arm cranking when an altered load is 
applied (effect of crank resistance). The metrics 
we analyzed are the joint configuration variance 
(in 3D joint space) and the muscle activation 
variance (in 4D muscle activation space). These 
metrics can indirectly validate the type of control 
utilized for this complex task.  

As stated above, repeating in each cycle 
the same joint configuration sequence as the 
resistance of the crank increases is not guaranteed. 
It has been demonstrated that, for a constrained 
movement, the joint stiffness increases as the load 
at the end-effector increases (Osu and Gomi, 
1999). Changes in joint stiffness at each joint can 
substantially change the pose of the arm even 
though the endpoint trajectory is unchanged. 
Following the Passive Motion Paradigm (Mohan 
and Morasso, 2011) the joint stiffness is changed 
in order to control the end effector load. If the 
joint configuration variance is not affected by 
crank resistance, it suggests the separation of 
kinematic- and force-control (Kolesnikov et al., 
2011; Piovesan et al., 2019) where the kinematic 
task can be maintained safely when crank 
resistance is altered. Knowing the type of control 
strategy is important in training and rehabilitation 
protocols. It is not the aim of this paper to 
evaluate rehabilitation protocols, but to provide a 
validation of the already developed theories 
applied in robotic rehabilitation (McIntyre et al., 
1995; Chib et al., 2009; Squeri et al., 2010). 

In the present exploratory study, we 
investigated unimanual and bimanual arm 
cycling, focusing on motor variance at the joint 
and muscle levels. Cycling was performed on an 
ergometer against three crank resistances. The aim 
of the study was to assess the effect of external  
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load on variances in joint coordination and 
muscle coordination. This would help to reveal if 
there exists a mechanism for the concurrent 
control of motion and force, and to which extent 
the two can be controlled separately in arm 
cycling. 

Methods 
Participants 
 Fifteen right-handed, able-bodied 
participants (24 ± 4 years old) were recruited in 
the study who performed arm cranking 
movements on an arm cycle ergometer. The study 
was approved by the Ethics Committee of the 
National Institute for Medical Rehabilitation, 
Budapest, Hungary. Written informed consent 
was obtained from all participants, and they 
participated voluntarily in the study. 
Experimental setup 

Each participant was seated in a fixed 
chair in front of an arm cycle ergometer (MEYRA, 
Kalletal, Germany (Fig. 1). The participant 
grasped the handle of the ergometer at the end of 
the crank, which was 10 cm long. The distance 
between the chair and the ergometer was set in 
such a manner that when the handle of the 
ergometer was at the most distant position with 
respect to the participant, the external angle of the 
elbow (the angle of the forearm with respect to the 
elongation of the long axis of the upper arm) was 
approximately 10-15 degrees. This corresponded 
approximately to the most extended elbow 
position. This angle was measured with a 
protractor. The shoulders were strapped (with a 
chest strap) to the back of the chair to restrict the 
movement of the trunk. Note that because of the 
difference in participant size this configuration 
does not guarantee that each participant moves 
with the same angular displacement. For that 
case, the dimension of the crank would have need 
to change from participant to participant. 
Nevertheless, the subject dependent variation has 
been taken into account within our statistical 
analysis, considering the subject as a random 
factor. 

Ultrasound emitting markers as part of an 
ultrasonic movement analyzer system (ZEBRIS 
CMS HS, Isny, Germany) were placed on 
anatomical landmarks. In particular, we used 
markers of the following landmarks: acromion, 
distal end of the humerus, proximal end of the  
 

 
ulna, styloid process of the ulna, caput of 
metacarpal of the fifth digit. One marker was 
placed on the chair and one on the handlebar of 
the ergometer. The positions of the markers were 
recorded by three ultrasound-sensitive 
microphones, with a sampling frequency of 100 
Hz.  

The surface EMG activity was recorded 
by the EMG recording apparatus of the ZEBRIS 
system, from the right and left biceps (BI), triceps 
(TR), deltoideus anterior (DA), and deltoideus 
posterior (DP) muscles, with a sampling 
frequency of 900 Hz. The skin was dry shaven and 
cleaned with 70% alcohol before placing pairs of 
NORAXON (Type 272) electrodes (interelectrode 
distance was 1.5 cm). The positions of the 
electrodes were based on the recommendations of 
the SENIAM project, “Recommendations for 
sensor locations on individual muscles” (Hermens 
et al., 1999). A reference electrode was placed at 
the elbow (over the olecranon). 
Motor task 

The participant was instructed to cycle 
with a cadence of 60 revolutions per minute 
(rpm), against three different crank resistances: 
low (1), moderate (2) and high (3). Cycling was 
performed bimanually and unimanually with the 
left or right arm. The resistance was quantified as 
the torque with which the crank resists rotation. 
In unimanual cycling, the low, moderate and high 
resistances were 1.16 Nm, 2.08 Nm, and 3.09 Nm, 
respectively. In bimanual cycling, they were 1.16 
Nm, 3.09 Nm, and 6.14 Nm, respectively. 

Cycling was performed by each 
participant unimanually (by the left and right 
arm) and bimanually under each of the three 
resistance conditions. Note, that we have tried to 
maintain the change in load between condition 
somewhat constant, assuming that the in the 
bimanual task the load is split in two. Some 
limitation in proper distribution of the load 
between conditions comes from the pre-set 
resistance of the ergometer.  

The palm was positioned horizontally, 
with the forearm pronated, and the fingers were 
bent around the horizontal handle. The order in 
which cycling conditions were chosen was 
random. In each condition, the participants cycled 
for 30 seconds. They had 1 minute of rest between 
conditions. A metronome was used to guide the 
participants to keep the cadence of 60 rpm. 
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Data processing and analysis 

Recorded EMG signals of each muscle 
were filtered using custom software in MATLAB 
(Mathworks, Natick, MA). Frequencies below 25 
Hz and above 300 Hz were cut off (4th order 
Butterworth bandpass filter), as were frequencies 
from 49-51 Hz to eliminate the effect of the 
electrical power source (i.e. 50 Hz in Europe). 
After filtering, a root mean square (RMS) 
algorithm was applied to smooth filtered signals 
with a moving window of 0.088 ms (80 samples). 

Muscle activation was represented, at 
each instant (t), in a 4-dimensional muscle space 
by a 4-dimensional vector M(t), whose 
coordinates were the EMG amplitudes of the four 
measured muscles:  𝐌(𝑡) = [BI(t), TR(t), DA(t), DP(t)]. 

 
Recorded marker coordinates were 

filtered applying discrete cosine transformation 
(DCT) to eliminate artifacts (Shin et al., 2010). 
Here, DCT was used to transform the recorded 
kinematic signals from the time domain to the 
frequency domain. Then, we multiplied the 
results with a 3rd order low-pass Butterworth gain 
function (cutoff frequency 10 Hz). Finally, inverse 
DCT was applied. The intersegmental angles at 
the shoulder, elbow and wrist were computed 
from filtered marker coordinates by trigonometric 
equations. Fig. 1 illustrates the joint angles: 
shoulder – 𝛼, elbow – 𝛽, wrist – 𝛾. Joint 
configuration was represented, at each instant (t) 
in a 3-dimensional joint space by a 3-dimensional 
vector 𝒂(𝑡) = [𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)].  

 
Arm cranking is often represented as a 

planar movement in the sagittal plane, where the 
crank angular velocity is defined as a vector 
orthogonal to such a plane. We are aware that the 
movement is not completely planar, in the sense 
that there is a small ab-adduction angle at the 
shoulder and thus the elbow may deviate from 
the sagittal plane. However, the direction of the 
angular velocity of this rotation passes through 
the instantaneous center of rotation of the 
shoulder and the point of contact of the hand and 
crank. As described in publications illustrating the 
Uncontrolled Manifold (Scholz and Schöner, 
1999), the variance of this degree of freedom does 
not influence the main task since the angular 
velocity vector of the crank and the angular  
 

 
velocity vector of the ab-adduction angle, are  
always orthogonal. We define the osculating 
plane ”Os(t)” as the plane orthogonal to the 
angular velocity around the elbow. Within this 
plane, we consider 3 degrees of freedom:  
elevation of the shoulder (𝛼(𝑡)), flexion-extension 
(𝛽(𝑡)) of the elbow, and flexion-extension of the 
wrist (𝛾(𝑡) ). 
Variance calculations 

Time courses of joint angles 
((𝑡), 𝛽(𝑡), 𝛾(𝑡)) and muscle activities 
(BI(t), TR(t), DA(t), DP(t)) were segmented based 
on the number of cycles the subjects completed. 
Time normalization was applied to allow 
comparison of cycles. The time progression within 
each cycle was divided into 100 equally spaced 
time bins, and joint angles and EMG amplitudes 
were approximated with cubic spline 
interpolation at the beginning of the bins. The 
crank angle was defined as 0 when the crank was 
directed horizontally towards the participant (the 
handlebar was the closest to the participant). A 
complete cycle was defined by the crank angle, 
with each cycle starting at a crank angle of 0 and 
ending at a crank angle of 360, and this cycle was 
mapped to a time scale (1 to 100). The direction of 
the crank rotation was set up so that the subject 
would push away when the hand was above the 
crank’s circle horizontal midline. 
Then, angular variances (joint configuration 
variances) and muscle activity variances across 
cycles were computed at each percentage of cycle 
time. 

Joint configuration variance per degree of 
freedom was defined by the following equation: 

 𝑉 (𝑡) = ∑ |𝒂(𝑡) − 𝒂𝒌(𝑡)|𝑁 ∗ 3  

 
where 𝒂𝒌(𝑡) = [𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)] is the joint 
configuration assessed in kth cycle, | . | denotes 
the vector norm (i.e. the magnitude of the vector), 
and 𝑡 = 1, … ,100  is the percentage of cycle time. 
The term 𝒂(𝑡) denotes the mean across cycles at 
time 𝑡, 𝑁 is the number of cycles. 

Similarly, the muscle activity variance per 
degree of freedom was defined as: 

 𝑉 (𝑡) = ∑ |𝑴(𝑡) − 𝑴𝒌(𝑡)|𝑁 ∗ 4  

where 𝐌(𝑡) = [BI(t), TR(t), DA(t), DP(t)] and 𝑡 =1, … ,100 (percentage of cycle time). 
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Variances of either the angles or the EMG 

signals (𝑥 = 𝑎𝑛𝑔, 𝐸𝑀𝐺) were averaged across 
normalized time for each participant separately to 
characterize the variance by one number in each 
cycling condition for each participant: 

 𝑉 = ∑ 𝑉 (𝑡)100  

 
Statistical methods 

We calculated a multiple ways mixed 
factor analysis of variance (ANOVA) for both the 
variance norm of angles and surface 
Electromyographic signals. In the analysis we 
considered 4 factors such as side=[‘left’,’right’], 
mode = [‘Double’,’Single’], loading resistance = 
[’Level 1’, ‘Level 2’, ‘Level 3’], and the [subject] 
which should be considered as a random factor 
and therefore makes this a mixed model. We also 
included in the model both a pairwise and a 
three-way interaction between the factors. The 
standard deviation for the whole population of 
angle variances is the linear sum of the standard 
deviation due to each factor. Thus, by doing a 
multifactorial ANOVA we can pinpoint the size of 
the standard deviation for each factor and see 
which one makes us reject the null hypothesis. A 
post-hoc multicompare analysis based on Tukey's 
honestly significant difference criterion was also 
performed.  

Results 
Neither the factors nor their interaction 

with each other creates a significant difference for 
the joint configuration variance. On the other 
hand, we can observe a significant effect of both 
the loading resistance (𝐹 , =28.02, p<0.0001) and 
the mode (𝐹 , =20.11, p=0.0005) for the variance 
of the EMG. Furthermore, there is a significant 
interaction between the subject and side 
(𝐹 , . =4.52, p=0.0282) and subject and mode, 
indicating that subjects perform the task with a 
statistically significant difference between the two 
sides, and between double-hand and single-hand 
cycling when compared to each other. This 
suggests that the subject is a confounding factor 
and must be considered as a random factor.  
Kinematic variances 

Crank resistance (CR) did not have a 
significant effect on angular variances (𝐹 , =1.43, 
p=0.2573). Furthermore, the interaction between  
 

 
load and cycling mode was also not significant 
(𝐹 , =0.28, p=0.7574) (Fig. 2 A1 and A2). Side 
(𝐹 , =1.20, p=0.2910) and cycling mode (𝐹 , =0.5, 
p=0.4894) did not have a significant effect on 
angular variances (Fig. 2B and 2C). 
Joint configuration variances (as functions of 
normalized time) were compared for low, 
moderate and high CRs (Fig. 3). 

Fig. 2 and Fig. 3 show that the magnitude 
of joint configuration variances and the time 
profiles of angular variances were not 
significantly affected by crank resistance. This was 
observed in both bimanual and unimanual 
cycling. Note, that the variance has three peaks. 
Since the cadence is constant there is a monotonic 
mapping between time and the angular position 
of the crank. Thus, the peaks occur approximately 
at position 90º, 180º, and 270º, of the crank angle, 
where the maximum variance is at 180º where the 
arm is fully extended, and where the kinetic 
energy of the arm is maximum. 
Muscle activation variances 

Higher crank resistance was associated 
with higher muscle activation variances (Fig. 4 A1 
and A2) in all examined cycling conditions for 
both arms. This difference was significant when 
low and high crank resistance conditions were 
compared in either bimanual (p<0.0001) or 
unimanual cycling (p<0.0001) according to a post-
hoc multicompare analysis based on Tukey's 
honestly significant difference criterion. This was 
also true when moderate and high crank 
resistances were compared in either bimanual 
(p<0.00025) or unimanual cycling (p<0.0001). 
Comparing bimanual and unimanual cranking, 
the muscle activity variance was higher for 
unimanual than for bimanual cranking (Fig. 4 B). 
Comparison of muscle activation variances when 
cranking by the left and right arm did not show 
significant difference (Fig. 4 C). 

In addition to comparing average muscle 
activation variances, muscle activation variance 
profiles were also compared among various 
cycling conditions. It was found that the shape of 
the variance profiles did not change for the 
specific arm, only its magnitude changed 
according to crank resistance. This finding is 
presented in Fig. 5. 

To represent quantitatively the similarity 
of the variance profiles, we computed correlation 
coefficients of the variance curves obtained in  
 



180  The effect of crank resistance on arm configuration and muscle activation variances in arm cycling movements 

Journal of Human Kinetics - volume 76/2021 http://www.johk.pl 

 
different resistance conditions. High correlations 
were observed when comparing variance curves, 
presented at Fig. 5, for different cranking 
conditions in unimanual cranking for both arms 
and bimanual cranking for the right arm. A 
weaker linear correlation was found between 
variance curves observed in bimanual cranking 
for the left arm (Table 1). 

Naturally, if muscles are working against 
higher external resistance, the EMG amplitudes 
increase, thus the magnitude of muscle activation 
vector increases. On the other hand, the profile of 
the muscle activation does not necessarily need to 
remain the same, but we can reveal that it does 
within the same arm/condition. If the amplitude 
increases in such a manner that the signal with 
lower values is simply multiplied by a constant 
c>1 then the variance will be multiplied by c2. The 
result is not trivial because for this to happen, the 
control variable needs to be linear (Kaupp et al., 
2018) , and the system to be controlled is highly 
nonlinear. Indeed, the force of each muscle (and 
the activation signal that mediates it) is required 
to accomplish 3 distinct tasks. These tasks are 1) 
providing the operational command for the hand 
to follow the prescribed trajectory, 2) 
compensating non-inertial forces such as 
centrifugal and Coriolis forces that are generated 
by the nonlinear dynamics as a result of the 
movement and, 3) generating additional forces for 
matching the resistance. Thus, for the variance to 
change quadratically between load conditions the 
controller must be able to decouple these 
components to guarantee that the operational task  
 
 
 

 
remains the same and that the resistance force is 
matched. We investigated how the magnitude of 
muscle activation and the variance of muscle 
activation increased when crank resistance 
increased. We found that the variances changed 
almost quadratically with respect to the change in 
average muscle activation. Fig. 6. presents that the 
average variance of muscle activation  increases 
approximately at the same rate as the mean 
squared muscle activation when the crank 
resistance is increased. 

For each participant, the average magnitude of 
muscle activation across time was computed for 
moderate and low crank resistances separately. 
The average obtained for moderate resistance was 
divided by the average that was obtained for low 
resistance. Thus, we get one ratio for each 
participant. The squares of this ratios were 
averaged across participants and these average 
values are presented at Fig 6 for different 
conditions (bimanul/unimanual, left/right arm) 
separately. The same method was used for the 
computation of the square of ratios of magnitudes 
of muscle activation obtained for high resistance 
with respect to magnitudes of muscle activation 
obtained for low resistance.  

The ratios of variances of mucle activations in 
moderate crank resistance to variances of muscle 
activations in low crank resistance, and the ratios 
of variances muscle activations in high respect to 
low crank resistance were also computed and 
presented. We compared the ratio of variances 
and the square of ratio of muscle activation 
magnitudes applying paired sample t-test, 
(p=0.05). There were no significant differences in 
any cycling conditions (Fig. 6.). 

 
 

Table 1 
Correlation coefficients of mean muscle activation variance time courses. 

 Bimanual Unimanual 

 Left arm Right arm Left arm Right arm 

low and moderate 0.51 0.77 0.95 0.96 
low and high 0.35 0.77 0.89 0.93 

moderate and high 0.90 0.92 0.98 0.93 
Mean muscle activation variance time courses (VEMG(t)) were correlated based on different resistance 

conditions (low, moderate, high).  Correlation coefficients between 0.40 and 0.59  
were defined as ‘moderate positive correlation’, between 0.60 and 0.79 were defined as ‘strong 

correlation’, and between 0.80 and 1.00 were defined as ‘very strong correlation’. 
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Figure 1  

Equipment and maker positions. A: arm cycle ergometer. B: schematic figure of the cycling participant.  
Black dots illustrate positions of markers placed on the body, on the handlebar  

of the ergometer and on the chair on which the participant was seated. Joint angles in the shoulder, elbow 
and wrist, respectively, were computed from marker coordinates. 

 
 
 
 
 
 
 
 

 
Figure 2 

Mean joint configuration (angular) variances A1) in low, moderate and high resistance conditions for 
bimanual cycling (mean across participants and sides); A2) in low, moderate and high resistance 

conditions for unimanual cycling (mean across participants and sides).  
B) in bimanual and unimanual cycling (mean across participants, resistances and sides);  

C) in left and right arms (mean across participants, resistances and modes). Lines above bars denote 
standard errors of the mean (SEM). 
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Figure 3 

Joint configuration (angular) variance profiles. Time course of angular variance (𝑉 (𝑡)) in low, 
moderate and high crank resistances in bimanual and unimanual cycling  

for the dominant (right) and non-dominant (left) arm. Continuous line: mean across participants. 
Dotted line: Mean+SEM 

 
 
 
 
 
 
 

 
Figure 4 

Mean muscle activation variances A1) in low, moderate, and high resistance conditions for 
bimanual cycling (across participants and sides); A2 ) in low, moderate, and high resistance 

conditions for unimanual cycling (across participants and sides); B) in bimanual  
and unimanual arm cycling (mean across participants, resistances, and sides F=20.11, p=0.0005); 

C) in left and right arms (mean across participants, resistances and modes F=0.15, p=0.7062); 
Lines above bars denote standard errors of the mean. 
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Figure 5 

Muscle activation variance profiles. Time course of muscle activation variance (𝑉 (𝑡)) in low, 
moderate and high crank resistances in bimanual cycling and unimanual cycling for the dominant (right) 

and non-dominant (left) arm. Continuous line: mean across participants.  
Dotted line: Mean+SEM 

 
 
 
 
 

 
Figure 6 

The ratios of average variances of muscle activations compared to the squares of the ratios  
of average muscle activation magnitudes. A) The ratios of variances in moderate crank resistance 

respect to variances in low crank resistance and the squares of the ratios of average muscle activation 
magnitudes in moderate respect to low crank resistance; B) The same as A when  

the ratios are computed in high respect to low crank resistance. Ratios are presented for different 
combinations of conditions separately (left arm bimanual, left arm unimanual, right arm bimanual, 

right arm unimanual). Mean and standard errors across participants are presented. 
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Discussion 

Arm cranking is a cyclic and constrained 
movement. Considering cyclic arm movements, 
such as circle drawing, variances have been 
studied with regard to the endpoint trajectory and 
joint configuration (Verschueren et al., 1999; 
Tseng and Scholz, 2005; Tseng et al., 2006; 
Dounskaia, 2007; Keresztényi et al., 2009). When 
arm cranking on an ergometer, not only the fixed 
hand path is given that has to be tracked by the 
endpoint of a multijoint system, but there is also 
the need to produce an additional force. 
Equations for closed chain mechanisms, which 
show that both torque and angular position must 
be controlled is presented in the appendix (based 
on the approach given in (Yagiela et al., 2020). 
These formulas show that the variance of the 
angles must change unless another control 
mechanism is taking place. 
Even if the desired hand path is given or it is 
fixed, there is still flexibility to choose patterns of 
joint coordination and muscle activation. 
However, our results suggest that neural control 
maintains the same joint configuration against 
altered external force in arm cranking. 
Kinematic variances 

In the cycling movement investigated 
here, each hand moved along a given path with a 
given velocity independently from the crank 
resistance. In particular, the hand moved on a 2-
dimensional path (circle). The variance in hand 
position was not affected by crank resistance by 
definition. It was unknown, however, whether 
joint configuration variance would be affected by 
crank resistance. The considered system is in fact 
redundant because the intersegmental angles in 
the shoulder, elbow and wrist are changing 
during the movement while the hand follows a 
planar 2-dimensional trajectory. The range of 
angular motion of the shoulder elbow and wrist 
was 42.75°±0.63; 68.87° ±0.49 and 23.35° ±1.16 
(mean ±SEM) respectively. As the system is 
redundant there exist infinite mapping from joint 
space to operational space to accomplish the task. 
Our results found that variances in angular 
changes in joints space are not affected by crank 
resistance. This was found for both arms. This 
suggests that during arm cycling, central control 
ensures stable movement execution at kinematic 
level even if crank resistance is altered. The 
kinematic requirements of the task do not vary for  
 

altered crank resistance, what changes is the 
additional effort necessary to execute the 
movement. This aspect suggests that when a 
mapping is chosen between joint space and 
operational space, it is maintained as the 
resistance at the crank increases. Furthermore, it 
provides evidence for the existence of an 
independent control of force and movement 
(Mason, 1981). The central nervous system (CNS) 
is able to handle two tasks separately. On one 
hand, it guarantees that the kinematic trajectory 
and velocity is executed. On the other hand, it is 
able to regulate the force the hand needs to apply 
without changing the kinematics, even though the 
kinematics and force generation are highly 
coupled through the non-linear dynamics of the 
neuro-mechanical system. The CNS thus parses 
muscular force for specific tasks, separately 
controlling the force necessary for the kinematics 
and the additional force required for the 
increasing crank resistance. 

Studies on bimanual circle drawing tasks 
found that movements of the non-dominant arm 
were more variable than the movements of the 
dominant arm (Ryu and Buchanan, 2004). We did 
not find variance related differences between the 
arms in our experiments on constrained arm 
cranking movements. This may be explained by 
the fact that the hand path was fixed and the 
execution of the task did not require high 
dexterity. Future work will require to study 
variability of movements of the two arms in other 
constrained motor tasks and the relation of such 
variabilities to the dynamic-dominance 
hypothesis that was developed and applied for 
targeted reaching movements (Schaffer and 
Sainburg, 2017). 
Muscle activation variances 

Cycling against a higher crank resistance 
requires increased muscle activity. It is a general 
assumption that activation signals with higher 
amplitudes produce higher motor variances due 
to signal-dependent noise. It is unknown whether 
larger variances, observed when cranking was 
performed against higher crank resistance, are a 
consequence only of higher signal amplitudes or 
if other motor control factors also contribute. The 
magnitude of muscle activation variances was 
significantly affected by crank resistance. 
However, the shape of the variance curve did not 
depend on crank resistance (Fig. 5, Table 1). 
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Muscle activation variances during arm cranking 
increased with crank resistance while the 
resulting kinematic (angular) variances were 
unchanged. Our results support the idea that joint 
configuration variances, while cycling on an 
ergometer, are not affected by crank resistance 
and that during this motor task, neural control 
stabilizes joint configurations against altered 
external force. This conclusion held true for both 
arms. This suggests that the CNS is able to 
modulate separately a kinematic task and a force 
task.  
A proportional variation of the muscle activation 
profiles as the crank resistance increases (and 
therefore a quadratic alteration of its variance) is 
possible only if the control system is linear. Given 
the nonlinearities of the dynamic system, such 
control can only occur if there is a prediction of 
the dynamic properties of the system and the CNS 
is capable of compensating the dynamic non-
linearity. 
It has been shown that power output affected the 
corticospinal excitability of the biceps brachii and 
triceps brachii muscles during arm cycling 
(Spence 2016, Lockyer 2018). These studies show 
that corticospinal excitability is muscle dependent 
and suggest that the central command controlling 
different muscles may be different. However, this 
observation does not imply that muscles are 
controlled independently in arm cycling. 
Investigating combined activation signals of 
several muscles is a question of further research 
that may reveal features of central control of arm 
cycling. In the present exploratory study 
combined muscle activation was represented at 
each instant (t) by a vector (M(t)) of activations in 
a set of muscles (in particular by a 4-dimensional 
vector in which each coordinate related to the 
EMG amplitude of one arm muscle). Combined 
muscle activation profile incorporates all the 
considered muscles and investigating the variance 
of these activation profile assumes that muscles 
are controlled not independently and the result 
showed that this variance increased quadratically 
as crank resistance (and power output) increased. 
As stated above, this suggests that a control 
system that may control combined muscle 
activation is linear in arm cycling tasks. Our 
conclusion that movement and force may be 
controlled differently during arm cycling aligns 
with the assumption about another cyclic limb  
 

 
movement, namely that neural control of force 
output and kinematics (i.e. speed) may be 
differently controlled in lower limb cycling 
(Christensen 2000).  
Limitations 

We have analyzed different sources of 
kinematic variance. Variance could come from 
measurements errors from the instrumental setup; 
on the other hand, we have placed particular care 
on these aspects. Specifically, we have used a 
system that is able to measure the position of the 
limbs without direct contact and with 
submillimeter precision. Thus, we have avoided 
errors that can come from using systems like an 
encoder, where plays in the kinematic chain 
between hand and transducer via a transmission 
can affect the measurements. In our setup, 
measurements strictly depend on what the subject 
has performed and not from additional errors in 
the measurement chain. The precision of the 
ultrasound system we utilized is actually very 
high. Considering an average length segment all 
about 300 millimeters with an error of 
identification at the tip of each segment equal to 1 
millimeter, the average angular error due to the 
measurement system is about 0.2 degrees. It can 
be seen that the standard deviation of the angular 
variance is much larger than that. Therefore, we 
can see that the variance of the joint angular 
displacement does not depend on the 
measurement errors but is strictly depending on 
the task. Considering the Uncontrolled Manifold 
Theory, we can speculate that there are infinite 
poses that can guarantee proper tracking of the 
handle along the circular trajectory. Thus, the 
subject is free to choose among every possible 
solution without compromising the kinematics of 
the endpoint. 
Useful insights for rehabilitation 

An aspect for rehabilitation practice that 
the present study provides is to help to plan 
proper upper body exercises for people with 
paraplegia, whose lower limbs are paralyzed. It is 
essential to prevent further health problems, 
which would be the consequence of a physically 
inactive lifestyle of people with paraplegia. Arm-
cycling on arm-cycle ergometer offers them an 
excellent exercise which helps to enhance physical 
capacity and maintain stable movement execution 
when employing increased crank resistances 
during the series of training sessions. As the joint  
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configuration variance is not affected by crank 
resistance, this motor task may involve a stable 
movement execution and may be well used in 
rehabilitation and training protocols. Another 
example of a potential application is functional 
electrical stimulation (FES) driven arm cycling for 
people with tetraplegia, who are unable to move 
the arm crank voluntarily (Zhou et al., 2018). 
When spinal cord injured individuals are not able 
to generate active muscle forces voluntarily, FES 
controlled arm cycling is a useful exercise. If 
muscle stimulation patterns are defined by 
observed muscle activity patterns of able-bodied 
individuals, then when crank resistance is 
increased during FES driven cranking, the 
stability of the control may be conserved. This 
may make the FES control easily adaptable to 
increased crank resistance.  

Conclusions 
In summary, we investigated arm cycling 

movements performed by able-bodied individuals 
on a cycle ergometer and addressed the question 
of how external load (crank resistance) affects the 
variances of joint configuration and muscle 
activation. The joint configuration variance was 
not affected by the crank resistance either in 
unimanual or bimanual cranking. This aspect was 
surprising because even though the hand path 
and cadence were constrained, a variability could 
be expected given that an increased resistance is 
associated to an increased motor noise that could 
have affected the time profile of the joint 
configuration variance. 

 

 
Muscle activation variances increased 

quadratically with respect to the change in 
average muscle activation as the crank resistance 
increased, underlining a linear control. This 
observed kinematic, and muscle activity variances 
may reflect the separation of kinematic- and force-
control. While a single controller based on the 
equilibrium point hypothesis was proposed in 
(Kolesnikov et al., 2011), more recent literature 
put forth the need for two separate controllers to 
compensate for dynamical forces (Mohan and 
Morasso, 2011). Our investigation suggests that 
the control scheme appears to allow a stable 
control of the constrained movement while 
independently compensating for the additional 
load and the effect of non-linear dynamics. Our 
experimental results are consistent with an 
operational space control scheme that decouples 
the kinematics and the dynamics (Khatib et al., 
2018). As suggested in (Mason, 1981), the 
modulation of force could be accomplished by 
proper modulation of stiffness, which would not 
change the pose of the arm as a function of the 
load but simply compensate for the additional 
crank resistance. Besides the importance of the 
relation of kinematic and force control in an arm 
movement task in which the hand path is 
constrained, these results may be relevant for 
planning rehabilitative training procedures. The 
results suggest that arm cranking can be 
performed in a comfortable, stable manner when 
external load alters.  
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BI-biceps, TR-ticeps, DA- deltoidus anterior, DP deltoidus posterior, CR crank resistance 
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Appendix  
Equations for closed chain mechanisms, which shows that both torque and position must be controlled 
(based on the approach given in ( Yagiela et al., 2020): 

Equations for closed multi-link chain mechanisms show that the variance of the angles must change 
(through a change in the transmission ratios) unless another control mechanism is taking place. Let us 
assume that  𝑚  is the mass of the ith link, 𝐼  is its moment of inertia with respect to the center of gravity, 𝑥 , 𝑦   
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are the translational velocities of the center of gravity with respect to the inertial frame and 𝛼  is the angular 
velocity of the link about its center of gravity. Furthermore, 𝜃 represent the angle of the crank. 

We can define the generalized moment of inertia of the mechanism (crank + arm) with respect to the 
crank center of rotation as follows 𝐼∗(𝜃) = 𝑚 𝜏 + 𝑚 𝜏 + 𝐼 𝜏  

Where  𝜏 = 𝑑𝑥𝑑𝜃 = 𝑥𝜃 ,   𝜏 = 𝑑𝑦𝑑𝜃 = 𝑦𝜃 ,   𝜏 = 𝑑𝛼𝑑𝜃 = 𝛼𝜃  

 
are the transmission ratio of each link segment with respect to the crank angle 𝜃. Notice that a change in 

variance of the links’ degrees of freedom within a crank cycle is reflected in the change of transmission ratio 
if it is assumed that 𝜃 is constant. 
The dynamic equation of the mechanism is as follows: 
 𝐼∗𝜃 + 12 𝑑𝐼∗𝑑𝜃 𝜃 = 𝑄∗ 

Where 𝑄∗ is the torque at the crank. 
Assuming a constant velocity of the crank  𝜃 = 𝑐𝑜𝑛𝑠𝑡 we obtain that 𝜃 = 0 and thus: 12 𝑑𝐼∗𝑑𝜃 𝜃 = 𝑄∗ 

 
Assuming we are increasing the resistance of the crank by a factor 𝑘 we obtain 𝑘 12 𝑑𝐼∗𝑑𝜃 𝜃 = 𝑘𝑄∗ 

 
If the velocity of the crank is to remain constant, we have that  𝑘2 𝑑𝐼∗𝑑𝜃 𝜃 = 𝑘𝑄∗ 

 
Therefore, we must have that the magnitude of the term 

∗
, representing the centrifugal and Coriolis 

dynamics components must increase 𝑘-fold. This implies a higher variance in the pose of the arm and, as a 
consequence, a possible higher variance of the joint angles with respect to the crank angle. This can be 
further developed as we can calculate the derivative of the generalized moment of inertia as follows 12 𝑑𝐼∗𝑑𝜃 = 𝑚 𝜏 𝑑𝜏𝑑𝜃 + 𝑚 𝜏 𝑑𝜏𝑑𝜃 + 𝐼 𝜏 𝑑𝜏𝑑𝜃   
 

And thus  12𝜃 𝑘𝑚 𝜏 𝑑𝜏𝑑𝜃 + 𝑘𝑚 𝜏 𝑑𝜏𝑑𝜃 + 𝑘𝐼 𝜏 𝑑𝜏𝑑𝜃  = 𝑘𝑄∗  
 

Since 𝑚  and 𝐼  are constants the terms 𝜏 , with 𝑞  indicating a generic degree of freedom, must 

all increase 𝑘-fold. These terms represent the product of the transmission ratios for the generic degree of 
freedom 𝑞  and its derivative with respect to 𝜃. It is obvious that if the transmission ratios do not change, we 

have that = 0 and thus the result is absurd.  To allow for constant transmission ratio, and therefore to 
maintain the variance constant, there needs to be an additional term in the equation that is able to control the 
torque without changing the kinematic. 
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